
Final Report

Lunar Pit Patrol

Levi Watlington, Alden Smith, Caden
Tedeschi, and Evan Palmisano

Sponsor: Trent Hare

Mentor: Vahid Nikoonejad Fard
11/05/2024



Lunar Pit Patrol 1
Introduction 3
Process Overview 3
Requirements 4
Architecture and Implementation 5

System Overview 5
Detailed Overview 7
Conclusion 8

Testing 9
Unit Testing 10
Integration Testing 10
Usability Testing 11
Results and Adjustments 11

Project Timeline 12
Future Work 14
Conclusion 14
Glossary 16

Appendix A: Development & Environment Toolchain 17
Hardware 17
Toolchain 17
Setup 17
Production Cycle 18

Application Open Development 18
Application Closed Development 19



Introduction
When astrogeologists attempt to determine the age of a planetary surface, they

often rely on studying impact craters. Specifically, they analyze the number and size of
craters, as well as their relationships to one another. Generally, a higher density of
craters within a larger crater indicates an older surface. On planetary bodies with
erosive processes, like Earth, older craters also tend to show greater signs of
weathering and degradation.

To assist with dating surfaces, astrogeologists use a command-line application
called craterstats, which generates plots based on input datasets. While craterstats is a
powerful tool, its command-line interface (CLI) can be cumbersome and challenging to
use, especially for those unfamiliar with command-line operations. This is where our
project comes in. We’ve developed a graphical user interface (GUI) for craterstats,
designed to make the application more user-friendly, accessible, and efficient to learn.

Using the standalone CLI can be frustrating for astrogeologists. For instance,
entering an incorrect character in a file name requires retyping the entire command.
Adjusting dataset parameters or modifying plot settings often involves constructing long,
complex commands, and a single error necessitates rewriting the entire input. These
inefficiencies make the CLI both time-consuming and error-prone.

Our GUI eliminates these challenges by providing an intuitive interface.
craterstats settings are organized into clearly labeled tabs, allowing users to adjust
parameters logically and with ease. The generated plots are displayed live within the
interface, giving immediate feedback on changes. Additionally, for transparency and
educational purposes, the GUI shows the corresponding CLI command required to
produce the same graph, enabling users to verify outputs or transition seamlessly
between the GUI and CLI if desired.

By simplifying the workflow, our GUI empowers astrogeologists to focus on their
research rather than navigating technical hurdles, significantly enhancing their
productivity and experience.

Process Overview
We adopted an agile methodology throughout the project's lifecycle, prioritizing

frequent iterations, continuous testing, and open communication both within our team
and with the client. This approach ensured that our deliverables consistently aligned
with client expectations while remaining flexible to adapt to evolving requirements.



For version control and collaboration, we utilized GitHub, which facilitated
efficient management of code changes and streamlined teamwork. To maintain
productivity and organization, we conducted bi-weekly team meetings to assess
progress, address challenges, and allocate tasks effectively.

Our development environment leveraged Conda as the Python environment and
package manager, ensuring smooth dependency management and compatibility across
team members' systems. To maintain a clear and structured project timeline, we utilized
OnlineGantt, a free online Gantt chart tool, that provides a visual representation of
milestones and deadlines.

To create a reliable, cross-platform GUI, we implemented the Python-based Flet
framework, a distribution of Flutter that ensures compatibility across major operating
systems. This choice allowed us to develop a seamless interface while maintaining a
consistent user experience. For backend processing, we integrated the CraterStats CLI,
ensuring that our application retained all the functionality and options provided by the
original command-line tool.

In addition to the software, we deployed a dedicated website hosted on the NAU
CEFNS server. The website serves as an introduction to our product, offering essential
documentation and resources for users.

Each team member took on specific roles aligned with their expertise, fostering a
balanced division of labor. Our structured workflows, supported by collaborative tools
and clear communication channels, ensured that the project remained on track and
well-organized from start to finish.

Requirements
When we received the project proposal from our sponsor, we were given four key

functional requirements. These requirements included the ability to open a plot file from
a user’s system in the GUI, the incorporation of every command-line application function
into the GUI for user selection, the ability to generate accurate plots using the
command-line functions, and the capability to export plots in file formats supported by
the application. These requirements were designed to ensure the application would be
straightforward and user-friendly for the average astrogeologist.

Using these functional requirements as a foundation, we developed a set of
non-functional requirements aimed at enhancing the user experience. These
non-functional requirements included ease of use, accessibility, clear navigation,
consistency, simplicity, time efficiency, intuitiveness, and a low learning curve. Each of
these was carefully crafted to meet our overarching goal of making the application



accessible and efficient for astrogeologists, enabling them to complete their work more
quickly and with less frustration.

Ease of use ensures astrogeologists can navigate the application without
confusion. Accessibility means the application can be easily installed and run on their
systems. Clear navigation allows users to quickly find the options they need, while
consistency ensures similar options are grouped logically and predictably. Simplicity
eliminates unnecessary complexity, making option selection straightforward and
transparent. Time efficiency minimizes the steps required to generate a plot.
Intuitiveness helps users anticipate where to find the features they need, and a low
learning curve ensures they can start using the application effectively with minimal
training.

As detailed in the Architecture and Implementation section, these non-functional
requirements guided the design of our GUI. They ensured that the application not only
satisfied the functional requirements but also delivered an intuitive and user-friendly
experience, making it as efficient and accessible as possible for astrogeologists.

Architecture and Implementation

System Overview

Our application is based on two main components that communicate together to
provide the user with the plot image they are looking for.



These components are the Craterstats III application being used as a library, and
our created GUI using Flet. Our GUI gathers all the user information needed to develop
the plot image. In the Craterstats III application, two major objects are made that are
used in the creation of the plot. These objects are the Craterplot object and the
CraterplotSet object. Using these objects the application creates a Matplotlib graph that
has all the information that a user would need to analyze or research.

In our application, our GUI acts as a data retrieval process to give the Craterstats
III application the necessary data to create the plot. This data is separated into two
separate tabs; Global Settings and Plot Settings, that each correlate either to the
Craterplot object or the CraterplotSet object. The Global Settings tab has settings such
as the presentation view of the graph, the celestial body of the data being plotted, and
the chronology system of the data. The chronology system consists of a chronology
function and a production function. There are also settings for an equilibrium function,
epoch visibility, isochron visibility and count, axes range options, and legend settings.
The Plot Settings tab holds information that is more linked to how the plot looks. These
are things like a title and subtitle, the font size, and the print scale as well. On this tab,
the user also has the option to create over-plots. These over-plots give the ability to
overlay multiple sets of data points, or multiple of the same set of points to compare
datasets on the same plot image. Below is a detailed UML Sequence diagram, with
UML Class diagrams that show how these components work together to get the final
product.

Sequence Diagram



CraterplotSet Object Craterplot Object

Our program was developed and influenced by the Model-View-Controller
architecture. This architecture is common in GUI development with the following bases
for each aspect. The Model aspect provides the data structures and ability to update the
application, the View aspect provides all the user interface aspects of the application,
and the Controller aspect provides all the data manipulation and processing, and in
regards to our program is what creates the graph.

Detailed Overview
To start the detailed overview section, we’ll describe how our application's

Controller aspect works. Our controller is the Craterstats III CLI application. This
application is used by astrogeologists from all around to plot these graphs. From our
sponsor Trent Hare, "Crater chronologies are a fundamental tool to assess planetary
surfaces' relative and absolute ages when direct radiometric dating is unavailable.
Martian crater chronologies are derived from lunar crater spatial densities on terrains
with known radiometric ages, and thus they critically depend on the Moon-to-Mars
extrapolation”. The application works by taking in a series of terminal commands that
map to a different setting of the plot that is created. Inside the application is a text
document of all the known functions that can be applied to the graph so that when a
user uses the program it knows if it has the correct input. There are also numerous
objects and functions within the application that are used in the creation of the graph.
These include objects like Chronologyfn, Cratercount, Craterpdf, Epochs, and



Productionfn. All of these objects have their functions that are used within the main
program to get the final graph. Explaining these objects and functions is outside the
scope of this project as well as the team’s knowledge.

Furthermore, in the Model aspect of the architecture we have all of our functions
that were created to help feed the data that our View aspect gives into our Controller.
This also includes functions that help the functionality of the program, like saving and
opening configuration files, closing the program, exporting the plot image, creating a
summary table of the plot, showing a demo view of the graphs, and having a popup that
shows all relevant information to do with the program. Our data-handling functions are
mostly to make sure that the data is in the correct data structure required for the
Controller. This data structure is a list with two elements, the first one being a dictionary
and the second being another list of dictionaries. The first dictionary holds all of the
Global Setting information, and the list of dictionaries holds all the information for the
overplotting ability of our application. Each dictionary holds the information for each
over-plot setting.

Finally, the View aspect of our application is arguably the most important. This
aspect is what displays all the UI for the user to interact with. Each UI element has an
event handler that updates the graph on any change. This gives a more efficient and
accurate plotting experience for the application. The View aspect is also how we get all
the data required for the Controller. We used controls like radio buttons, dropdown
menus, text fields, and checkboxes to help create our application in a user-friendly way
that makes the application easy to use and understand.

Conclusion
To conclude the Architecture and Implementation of our project we will discuss

how our processes and application have changed from the beginning to the end of our
capstone experience. Our first step through this process was to figure out what
technologies we would be using and how we could develop this application. We started
with the options of Unity, Windows Forms, Tkinter, DearPyGUI, ReactJS, and ThreeJS.
Unity and Windows Forms were nearly immediately taken off as options due to the high
overhead that was required to run and build these types of applications. There was also
a problem with the compatibility of using and running these systems on Linux. ReactJS
and ThreeJS were initially considered as stretch goals for our project to run our
application as a web application as well as a desktop application. However, due to
timing and other complications, we were only able to create a working desktop
application. We started off our prototyping with Tkinter. This was a long-renowned
library used in multiple programming languages to create GUI applications. It has also
been previously used by a few of our members. After our initial prototype was created



for this we as a team decided that the theming and age of Tkinter didn’t adhere to what
we were trying to make. Because of this, we decided to create a second prototype using
a different library, DearPyGUI. This library was brought to our attention by our sponsor
Trent. It was a newer library that allowed for better capabilities with graphing and was
easier to use in terms of creating the GUI. A problem was brought to our attention while
presenting our prototype with DearPyGUI. The library was primarily developed by one
person and it was a newer library so there was a slight chance of the library becoming
deprecated which would result in our project being of no use. The final prototype that we
ended up with was built with Flet. Flet is a library powered by Flutter, which means that
not only did the UI look new and modern, but it was also being developed by a team
that would be more dependable than other libraries. Flutter is supported by Google
which gave us the theming and dependability that we had been looking for.

There were also a few design and functionality decisions that were made that
differed from what we originally planned. Our initial prototypes had been designed to be
separated into three tabs, Global Settings, Plot Settings, and Plot. The Global Settings
and Plot Settings didn’t change from our initial design but from testing and a suggestion
from our sponsor, we moved the Plot image to be viewable at all times no matter what
tab was selected. Our functionality in terms of how we would integrate the Craterstats III
application and our GUI was also different than how we planned. Our first iterations of
the alpha prototype were created by integrating the two applications through a Python
library called subprocess. Using this we would essentially run the CLI command that
would create the graph in our application and display the results from that. Our final
version integrates differently by instead importing the Craterstats III application as a
library and using the functions and options within that program to create and display the
graphs. This allowed for faster interactions with the application and more efficient
updated graphs.

Testing
Effective testing was the cornerstone of our software development process,

ensuring that every component functioned as intended and met the end-user's needs. In
this section, we delved into the comprehensive testing strategy employed to validate our
application. Our approach encompassed unit testing to verify the integrity of individual
components, integration testing to ensure seamless interaction between modules, and
usability testing to guarantee a user-friendly interface.

By systematically applying these testing methodologies, we aimed to identify and
rectify defects at various stages of development. The results of these tests were critical
in refining our design and source code, ultimately contributing to a robust and reliable
application. This section provides a detailed overview of our testing activities, the



strategies implemented, and the insights gained, highlighting how rigorous testing
shaped the quality of our software.

Unit Testing

Our approach to unit testing involved utilizing Python’s unit test and pytest
libraries to streamline our testing processes. We aimed to determine test-related
metrics, specifically focusing on line coverage, which measured how much of our code
was executed during tests. For key input options, we ensured that their values matched
stored values accurately. For example, we tested that selecting the "Cumulative" radio
button correctly stored "cumulative" in the plot configuration. This involved assertion
testing to verify input accuracy.

Our focus was primarily on functionalities that impacted user experience,
ensuring the critical parts of our system were robust and reliable. We tested UI elements
such as radio buttons, dropdown menus, check boxes, and input boxes. Each unit test
was designed to run independently, allowing quick diagnosis of issues. Python’s testing
libraries enabled us to run these tests repeatedly, especially after updates or changes to
the code, ensuring consistent functionality.

Tests handled both typical user behavior and edge cases. Text inputs were tested
with both valid entries and unexpected inputs, such as special characters or empty
fields. Dropdowns and radio buttons were tested for correct default values, ensuring
predictable application behavior even if some settings remained unchanged.

Integration Testing

Our integration testing focused on the boundaries where modules interacted
significantly. We followed these steps:

First, we identified key integration points by examining the craterstats GUI
architecture to pinpoint critical data exchanges and function calls. Specifically, we
looked at the GUI-to-CLI interface, where user input from the GUI was passed to the
craterstats CLI library, and the data processing and plotting modules, where data
retrieved from the CLI library was visualized in the GUI.

Next, we designed test harnesses for each integration point. For the GUI-to-CLI
interface, we simulated user commands with mock inputs, verifying correct command
transmission. For the data processing module, we provided various data inputs and
compared the generated plots against expected outputs.



We then validated our assumptions through data format verification, ensuring
that the data structures expected by the plotting module matched the output from the
processing module. We also conducted boundary testing, validating interactions under
varying input sizes and types, including edge cases, and simulated erroneous inputs to
ensure graceful error management.

For each integration point, we applied specific test cases. In the GUI-to-CLI
interface testing, we used mock GUI input sequences, checked the data passed to the
CLI module, and confirmed that the CLI processed commands without data loss,
aligning outputs with GUI expectations. In the data processing and plotting module
testing, we used input files with crater data and configurations, visually inspected and
programmatically compared output plots against reference images, and ensured
consistent plot generation reflecting input data with no visual inconsistencies.

Usability Testing

Our usability testing plan considered the nature of our application and its
intended users, primarily astrogeologists with varying levels of CLI experience.
Transforming a CLI application into a GUI necessitated comprehensive usability testing
to meet user expectations and behaviors.

We employed several usability testing methods. First, we gathered qualitative
feedback from astrogeologists by outsourcing testing to the USGS. This allowed us to
explore user perceptions and areas of confusion. Second, we performed task-based
user studies with screen capture software, noting difficulties or hesitations. Third, we
engaged our sponsor to review the interface based on usability principles before the
Alpha release. Finally, we conducted acceptance testing with a larger group of potential
end-users to validate the application’s intuitiveness and expectation alignment.

Results and Adjustments

During our unit testing phase, we achieved a high test coverage of approximately
95%. This high coverage rate indicated that most of our codebase was being executed
during tests, helping us identify and fix bugs effectively. For example, our tests
confirmed that selecting the "Cumulative" radio button correctly stored the value
"cumulative" in the plot configuration, dropdown menus returned correct default values
when no selection was made, and text inputs were successfully processed for valid
entries, with special characters and empty fields handled gracefully without causing
crashes or unexpected behavior.

Our integration testing uncovered several critical issues that were promptly
addressed. Initial tests of the GUI-to-CLI interface revealed some inconsistencies in the



data passed from the GUI to the CLI, such as incorrectly formatted commands that led
to processing errors. We resolved this by refining our command parsing logic, ensuring
all user inputs were accurately transmitted. Early tests of the data processing and
plotting modules showed discrepancies between the input data and the generated plots,
with labels and markers occasionally failing to match the provided data. By refining our
data validation and transformation procedures, we ensured that plot attributes
consistently reflected input data, achieving a 100% success rate in automated checks
and confirming visual consistency.

Usability testing provided invaluable insights into the user experience, leading to
significant improvements. Feedback from astrogeologists highlighted areas of
confusion, such as complex navigation paths and unclear button labels. In response, we
simplified the user interface, reorganizing menu structures for better accessibility and
clarity. Screen capture recordings revealed specific pain points, such as difficulties
toggling the demo mode and creating sample files. These insights led to the
implementation of clearer instructions and more intuitive controls. Our sponsor identified
several usability issues early on, such as inconsistent button sizes and unresponsive
elements. Addressing these concerns, we standardized UI components and enhanced
responsiveness across all interface elements. Acceptance testing with a broader group
of potential end-users validated that the application met their needs. Most participants
found the interface intuitive and user-friendly. However, some suggested additional
features, such as customizable plot settings. Incorporating this feedback, we added new
functionalities to improve user satisfaction and workflow efficiency.

Overall, these comprehensive testing activities and the resulting refinements
significantly enhanced the reliability, usability, and functionality of our application,
ensuring it met the high standards expected by our target users.

Project Timeline
The development of the CraterStats application followed three distinct phases:

the design phase, the prototype phase, and the alpha phase. The first two phases were
completed during the first semester of the capstone class, while the alpha phase
extended through the entire second semester.

During the design phase, the team’s first task was to analyze the CraterStats CLI
code to understand its functionality and determine what needed to be implemented in
the final product. Once the code was deciphered and documented, the team began
designing the prototype's layout and flow. Multiple designs were proposed, but the team
ultimately decided on a multi-tabbed layout that separated global settings, plot settings,
and the plot itself into distinct tabs for user navigation. With the design in place, the next



step was to research GUI frameworks capable of supporting the planned layout. The
design phase was completed within the first few weeks of the semester, providing a
foundation for the prototype phase.

In the prototype phase, team members Caden Tedeschi and Levi Watlington
developed simple prototypes using different GUI frameworks to evaluate their usability
and functionality. Several frameworks were tested before the team settled on Flet, a
Python-based framework, as the best choice for the project. Once Flet was chosen,
Caden created a final prototype that served as the starting point for the alpha phase.
This marked the conclusion of the prototype phase and the end of the first semester.

The alpha phase began at the start of the second semester, focusing on
integrating the CraterStats CLI application with the GUI. The team worked to connect
the CLI functions to corresponding options in the GUI, aided by thorough documentation
from the design and prototype phases. Caden’s well-documented Flet prototype and
Levi’s detailed comments on the CLI functions streamlined the process, enabling the
team to efficiently link the GUI options to their respective backend functions. Evan
Palmisano played a critical role in implementing file upload functionality for plot and data
files, as well as enabling the exportation of plots.

During initial testing, the team noticed that launching the app required lengthy
commands, which was inconvenient. To address this, Alden Smith created a script that
allowed the GUI to be launched with a single click. About halfway through the alpha
phase, the team presented a semi-functional version of the application to the project
sponsor. Based on the sponsor’s feedback, the GUI layout was adjusted so that the plot
would appear on every tab, rather than being confined to a single tab.

Following these changes, the team completed the integration of the CLI functions
and prepared the application for user testing. User testers included the project sponsor,
Greg Michael (the creator of CraterStats), and astrogeologists from organizations such
as USGS and OpenPlanetary. The feedback from user testing revealed several issues
the team had not encountered during development. One significant recommendation
from Greg Michael was to switch from using the “.plt” file format to a “.cs” file format for
easier overlaying and exporting of plots. This required reworking how the application
handled uploaded files to ensure accurate graph generation.

In addition to addressing this major change, the team resolved smaller issues
such as range display inaccuracies and redundancies in demo generation. After fixing
as many issues as possible within the remaining semester timeline, Ibrahim Hmood
packaged the application as a pip-installable module, making it easier to distribute and
install.



Future Work
During the development of the CraterStats GUI, our team successfully

implemented all the core requirements set by our sponsor. However, we were unable to
address the stretch goals outlined in the project proposal due to the need to prioritize
releasing the product for user testing. Pursuing these additional goals would have
reduced the time available to resolve issues identified by testers, who provided valuable
feedback through our GitHub repository.

The stretch goals we were unable to address included integrating the GUI into
the QGIS mapping system and developing a Python or web-based interface to enable
the GUI’s use within a Jupyter Notebook environment. These ambitious objectives,
while beyond the scope of our initial deliverables, present exciting opportunities for
future development and enhancement of the CraterStats GUI.

Beyond the stretch goals, the CraterStats GUI project (CraterStats III) is open
source, offering a platform for continued innovation. This means that astrogeologists,
developers, or anyone with coding expertise and creative ideas can contribute by
adding new features or improving the existing functionality. Future contributors could
focus on achieving the stretch goals or explore original enhancements to make the
application even more versatile and user-friendly.

The open-source nature of the project ensures that CraterStats GUI will continue
to evolve, empowering astrogeologists with better tools to streamline their work and
further the field of planetary science.

Conclusion
The CraterStats GUI was developed to make the powerful plots generated by the

CLI application more accessible to the average astrogeologist. Previously, many
astrogeologists struggled with the steep learning curve of the CLI application, as they
lacked formal training or experience with command-line tools. This learning barrier often
made the effort to use the application outweigh its benefits. Our team addressed this
issue by transforming the CLI into an intuitive, user-friendly GUI that simplifies the
process of uploading data, modifying parameters, and saving plots, all while
streamlining workflows and improving time efficiency.

One of the most impactful features we implemented is the real-time updating plot,
visible on every tab of the GUI. This allows users to see the immediate effect of their
changes, eliminating the need to repeatedly regenerate plots due to incorrect settings.



This feature alone greatly improves the application's usability and efficiency, and when
combined with features like functional grouping, clear navigation, and detailed labels,
the GUI becomes an indispensable tool for astrogeologists. Now, users with no
command-line experience can effortlessly create precise plots by simply following the
logical flow of the GUI.

Throughout the development process, our team, the Lunar Pit Patrol, remained
focused on our goal: making astrogeologists' work easier and more efficient. We
maintained strong communication and collaboration despite balancing multiple other
obligations, which allowed us to produce a product we are truly proud of. The
experience of working on this capstone project has been invaluable, serving as a
stepping stone to our future careers and equipping us with skills we will carry forward
into the industry.

In closing, we are honored to have had the opportunity to contribute to the field of
astrogeology by creating a tool that will help professionals streamline their research and
analysis. We thank you for following our journey, and we hope that our work with the
CraterStats GUI will inspire further innovation in this exciting field.



Glossary
Alpha Product: The earliest version of a product that is ready for user testing.
CLI: Command Line Interface - A text-based way to interact with a computer's

operating system by entering commands
Craterstats III (A.K.A CraterStats3): A tool to analyze and plot crater count data

for planetary surface dating.
File Format: The way a file can be stored on a computer
Framework: A foundation that gives users the tools they need to create a specific

type of product.
Flet: A Python GUI library that is powered by Flutter to build multi-platform

applications in Python. https://flet.dev/
Flutter: Flutter is an open-source framework for building beautiful, natively

compiled, multi-platform applications from a single codebase supported by Google.
https://flutter.dev/

Functional Grouping: The grouping of things based on the functionality that they
have.

GUI: Graphical User Interface - A visual way to interact with electronic devices,
such as computers, smartphones, and tablets.

Jupyter Notebook: The latest web-based interactive development environment
for notebooks, code, and data. Its flexible interface allows users to configure and
arrange workflows in data science, scientific computing, computational journalism, and
machine learning. https://jupyter.org/

Overlaying Plots: A plot made up of multiple plots layered over one another
Python: A high-level general-purpose programming language designed to

emphasize code readability.
QGIS: A Geographic information system software that is free and open-source.

https://www.qgis.org/
Real-Time Updating Plot: A plot that changes in accordance with the options that

the user is choosing.
Windows Forms: a UI framework that creates rich desktop client apps for

Windows.
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/overview/?view=netdesktop-
9.0

Unity: An application that creates real-time 3D games, apps, and experiences for
entertainment, film, automotive, architecture, and more. https://unity.com/

https://flet.dev/
https://flutter.dev/
https://jupyter.org/
https://www.qgis.org/
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/overview/?view=netdesktop-9.0
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/overview/?view=netdesktop-9.0
https://unity.com/


Appendix A: Development & Environment Toolchain

Hardware
Evan Palmisano

● Desktop (Ryzen 7, RTX 2070 Super, 64 GB RAM, Windows 10)
● Microsoft Surface Go 2 (Intel i5, 8 GB RAM, Windows 11 / Ubuntu 20.04)

Ibrahim Hmood
● Laptop: Dell Latitude 3410: 8 GB RAM Windows 11

Alden Smith
● Desktop (Ryzen 9, RTX 4070TI, 32 GB RAM, Windows 11)
● Laptop (Intel i7, RTX 2060, 16 GB RAM, Windows 11/Ubuntu Dual boot)

Caden Tedeschi
● MacBook Pro: Apple M3 Pro Chip, 18 GB RAM
● Windows 11 Desktop (Ryzen 9, 2070 Super, 32 GB RAM)

Levi Watlington
● MacBook Pro: 1.4 GHz Quad-Core Intel Core i5, 8 GB RAM

Minimum Requirements - 4 GB RAM & 8 GB Storage Space

Toolchain
Visual Studio Code

● General programming IDE. Allows for installation of many helpful
extensions

● Most used extension: Black (Python formatting extension)
PyCharm

● Python Specific IDE
● Used mostly for testing Craterstats III application

Setup
For configuring the project’s environment we recommend using the Anaconda package
manager for Python. This will allow the user to operate the application in a contained
environment. Fortunately, this setup configuration applies to a variety of operating



systems mainly focusing on Windows 10/11, Mac OS, and Linux platforms such as
Ubuntu 22.04.

To set up your Python environment, you can download the package manager at
https://docs.anaconda.com/anaconda/install/

Upon installation, open your command prompt with the Anaconda base environment
activated. The first step is to create a new environment using Python version 3.8. To do
that, you can type the following command:

conda create -n <environment name> python=3.8

After typing the command, all a user has to do is install our application using pip as it is
conveniently hosted using PyPi. To install the application you can type the following
command:

pip install craterstats-gui
Now that you have installed the application, all that is left is to run it. To do so, you can
run:

craterstats-gui

After running the command, the application should initialize and run within the
configured environment.

Production Cycle
The production cycle for Flet UI development can be done in one of two ways

Application Open Development
Before developing open the application through the terminal by navigating to the
directory that main.py is located in and running.

flet run

After the application is running any code changes to the main.py file will automatically
update the application and relaunch.

https://docs.anaconda.com/anaconda/install/


Application Closed Development
This method is more tedious but considered the more proper way to develop. After
making any changes to the codebase, go to the directory where main.py is located and
run.

flet run

After testing the application close the window and make necessary changes to the
codebase.

Repeat.


